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risk i s  derhred as  are some recursive relstioaahipe fo aid i n  mqpu&atSan, 
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sian estimation and design are considered for a dichotomous 

response surveillance model for defectives* 

item, F(t  ), is assumed t o  be related t o  the time t after storage at which 

surveillance tes t ing  is performed by the emulative distribution function 

The probability of a defec%k?a 

This distribution f’unction is appropriate i f  an i t e m  is defective whenever 

it has one or more defects and when the nlrmber of such defects I s  a Poisson 

random variable with mean A t .  The h e t i o n  (1.1) also arises when the 

failure t i m e  of each item is exponentially distributed with mean ( l / A ) .  

Surveillance is carried out by tes t ing  k l o t s  of size ni at respective 

times ti and f’indiq ri defectives i n  the i-th lot. Tbe r ‘s are i 
assumed t o  be independently and binomially distributed w i t h  means 

niF(ti), i = 1,2,...,k. 

It is assumed that  prior infomation on A c m  be summarized by 

specif5riag 8 gamma distribution with probabil%ty density Aznction 

which has mean and variance 

respectively, 

for  t h i s  problem and is flexible. Boreover, considerable past information 

This distribution i s  in the extended natwral conjugate f&ly 
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is m available i n  suPvefSlance situations 

prior parameters. A quadratic Loss function is  

the determination of its Bayes estimate denoted -. 

for uses i n  spec2 

also r t s s m a  for  x in 
by %e 

The surveillance se t t ing  for tes t ing for defectives is described 

by Hillier [ 6 ] .  

as specified by (1,L) is common i n  r e l i ab i l i t y  l i f e  tes t ing problems 

(see Epstein [4]) .  

assay Obrough its relationship with the Poisson distribution (see Cormel3 

The assumption of an exponential distribution m c t i o n  

It also arises f'requently i n  epidemiology and biological 

and Speckman [3]). Bayesian estimation for t h i s  probhm when the 9 .  

probability of a defective is  Sfxed is considered, for  instance, by 

Bracken [2]. 

because h is  prior on X would involve the design parameter t. 

H i s  work is not appropriate for our surveillance s i tuat ion 

In Section 2 derivations are presented of fomulas for the posterior 

probability density function of A, its mean which is o w  Bayes estimate 

X 

o f t h e  r i@a  and the Bayes risk. 

using these formulas are given i n  Section 3. Then the selection o f t h e  

time at which t o  carry out a surveillance test and of the corresponding 

l o t  size are considered i n  Section 4. 

applied successively t o  select  the complete se t  of k l o t s  inspected during 

a surveillance program, Tables of optimum surveillaace times are included 

i n  Section 4 followed by tables of correspnaing a y e s  r isks  for use in 

selecting l o t  sizes. 

.r 

other posterior moments of A, the jo in t  marginal probability function 

Recursion relationships t o  assist i n  

Tbe resu l t s  presented there can be 



L e t  g = (rl, .. e ,P ) be the  number of defective Items i n  l o t s  k 

respective sizes II, T (nlse . e $5) corresponding t o  inspection t i m e s  

- t = (tl,...stk). 

probability fimction of the elements of - r given X is 

From the assumptions stated i n  Section 1, t he  joint  

where the subscript i rages from 1 through k unless otherwise specified, 

Binomial. expansion of the last product term i n  ( 2 a 1 )  leads t b  

where 

.L J. 

and note that  
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Using (2,3) along w i t h  the pr ior  

given by (le2) , we can write the 

density function for  A as 

probability density function on X 

corresponding posterior probability 

Similarly, use of equation (2.3) enables the marginal probability Function 

of E t o  be written as 

and, with y = a -+ %the  w;th moment of the posterior distribution of X 

about the origin t o  be written as 

A 

The b y e s  estimate A is given by set t ing w = 1 i n  (2.4) and t h e  posterior 

variance of X can be determined by using equation (2.6) i n  the calculation 

of lJ; - ($I2. 

The %yes r i sk  is  defined as 

where E denotes expectation w i t h  respect t o  the  joint  distribution of L E  
X and z e  Similarly defining Er and EXlr, we have - - 



6 

where f(g(ao 8) is given by (2.5), 

be evaluated using (2.6). 

and noting that 

BOW E (%-A)* EAi&A2)-f Can 
A I f  

Substituting the resultant expression in to  (SOT) 

implies f r o m  (2.5) with u replaced by a + 2 tha t  

we find that  

Although the expressions presented i n  t h i s  section for Bayesian 

anaJysis of surveillance data are complex, aomputations using them are 

w e l l  within the capacities of modern computing equipment. 

when u is chosen t o  be a positive integer the S(z, a, 8) functions which 

occur i n  all of these expressions sat isfy recursive relationships 

which can be ut i l ized i n  these computations and which are derived i n  t he  

next section. 

Moreover, 

3. RECURSIVE RELATIONSHIPS 

Tbe expressions derived i n  section 2 all require the  evaluation of' 

S(r;Yb8) - functions as given by equation (2.2). 

supprsss the subscript i i n  (2,2) and write 

When k = 1, we can 



where K = n - r + s/t. For k = 2,3,,,, we can similarly w r i t e  

k k-1 

i=l 
with 5 = 1 t (n -r )/tk + 1 t. j /t + B/t,. Comparison of equations x i  k i i i  i=l 

(3.1) and (3*2) reveals that  for any positive integer k, the evaluation of 

S(rr;y,f3) involves the evaluation of one or more sums of the form 

for suitably selected r and K. 

evaluating T(’)(K) i n  th i s  section for integer values of Y. 

We develop recursive relationships for  

F i rs t  consider the  Beta integral  

r I ’ K  x (l-x)rdx = r(K)r(r+l)/r(K+r+l) = r!/ TI ( j + K ) ,  k > 0, 

0 j=o 

which can also be integrated i n  the form 

Thus 

3=0 
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Differentiating T(’)(K) as given by the middle expression in (3,4), 

we obtain 

Evaluating ( 3 . 6 )  using (3.5) yields 

We can extend (3.6) t o  any positive integer Y to give the recursion 

formula 

T(Y)(K) = -(v-i)-’ adyo1)(K)/aK (3.8) 

which could i n  turn be used t o  develop an equation for T(’)(K) i n  the way 

(3,7) was derived for Y = 2. In particular, for Y = 3 it can be shown that 

Mow define the polygamm function 

where 
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Taking logarithms and derivations with respect t o  K of both sides of 

(3,10), we find that 

which shows that 

r 1 l / ( j + K )  = $(')(r+l.+K) - $(')(K)' 
j=O 

Differentiation of both sides of ( 3 @ l l )  w i t h  respect t o  K, along with 

(3.9), yields the similar expression 

Then by induction it can be shown tha t  

(3.12) 

From (3.3) and (3.12) it is clear tha t  the T(')(K), Y = 1,2,...., 

can be expressed as rational combinations of polyg))-mma flmctions. Hence, 

f r o m  (3.1) and (3.21, the Bayes estimate i and the other formulas derived 

i n  Sectlon 2 can also be expressed using polygamma functions for integer 

values of the  prior parameter CY. Tables for di-, tri-, tetra- and 

pentagasrma functions are given i n  [l]. 

gama functions i s  f41. 

Another source of' tables of poly- 
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4. DESIGN 

The design of a surveillance tes t ,  denoted by e, i s  discussed i n  t h i s  

section fo r  a single l o t  and involves the  choice o f t h e  t h e  of tes t ing  B 

and the l o t  size n. Even when several l o t s  are tested i n  a surveillance 

program, the tes t ing is  usually done successively one l o t  at a t i m e ,  

The prior information ut i l ized at any given stage can be adequately 

described, at least for  planning purposes, by a gamma distribution with 

mean and variance determined fromthe posterior distribution given the 

data on the l o t s  already tested using equations (1.31, (1.4) and (2.6). 

PetAsovits [7] has shown t ha t  the  actual posterior distribution w i t h  

probability density function given by (2?4) and the gamma distribution 

w i t h  the same mean and variance have similar moments under a variety of 

situations. 

Section 2, which were developed for any number of lo t s ,  can be applied 

t o  the data on a l l  of the l o t s  tested through t h a t  t i m e .  

A f t e r  the tes t ing of a lot  is  completed, the  formulas of 

The expected cost C ( e , i )  of a decision t o  be based on a surveillance 

tes t ,  e, may often be separated into two components, the expected sampling 

cost EASr[Cs(e,r)]  and the expected loss function E [L(A,i)] X,r 

multiplied by an appropriate scale factor, TI. 

t o  minimize 

Thus an experiment is  chosen 
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where R(ct ,@) is the Bayes r isk computed using the prior gamma distribution 

depending on the surveillance results already obtained i n  addition t o  

the prior distribution originally specified, 

The computation of E [C (e,s)] i s  usually straightforward since X,r s 

C (e,r)  is often independent of both r and t e  

may be specified t o  minimize the Bayes r i sk  and then the relationship 

between the Bayes r i s k  and the expected sampling cost may be used t o  

select n and complete the  design o f t h e  surveillance test. 

t h i s  design process, values of t, denoted by to, which minimizes the 

Bayes r i sk  are given i n  Table I for several combinations of n and 

coefficients of variation v = (ct+l)”l’* w i t h  prior m e a n  li = (a+l)/B = l e  

In t h i s  situation, t 
S 

To help i n  

The corresponding &yes risks are displayed i n  Table 11. If the expected 

cost of sampling is independent of r but depends on t as w e l l  as n, then 

t and n would be selected by minimizing the right side of equation ( 4 , l )  

numerically ut i l iz ing equation (2.8) for the Bayes risk. 

It can be shown t ha t  there exists at  least one positive to which 

minimizes the Bayes risk. 

i n  the preparation of Tables I and I1 suggest that  to is unique, so t 

is referred t o  as the  optimum surveillance time. Also, it can easi ly  

be shown tha t  i n  the tabling of optimum swveillance times to it is only 

necessary t o  consider prior distributions with means v = 1 as i n  Table I. 

To obtain a t 

entry i n  Table I. 

Corresponding Bayes risks at t 

by multiplying the appropriate entry i n  Table I1 by 

Moreover, numerical computations carried out 

0 

for a prior mean v p 1, divide p into the corresponding 0 

Similarly v = 1 for a l l  entries i n  Table 11. 

for other pr ior  means can be comPStjifed 
0 

2 
1.1 e 
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TABLE I. Optimum surveillance time to w i t h  prior mean one by prior 

coefficient of variation v and sample size n 

V n = l  n = 5  n = 10 

0.1 
0.2 

0.3 

Oe4 
0.5 
0.6 

0.8 
0.7 

0.9 
1.0 

1.5 
2.0 

1.5850 

1,5593 

1 5179 
1 . 4626 
1 3961 
1 . 3215 
1 . 2418 
1 . 1602 
1.0789 
1 * 0000 

0,6717 
0.4586 

1.5844 

1.5524 
1 . 4910 
1.4019 

1.2944 

1 1792 
1.0651 

0.8583 

0.7693 

0.9572 

0.4510 
0,2921 

1.5838 
1.5451 
1.4674 

1.3577 
1.2320 

1 . 1021 
0 . 9824 
0.8722 

0.7737 
0,6871 

0,3969 
0.2494 

TABLE 11. Bayes risk at the 

mean one by prior coefficient of variation v and sample size n 

optimum surveillance time to with prior 

V n = l  n = 5  n = 10 

0,l 
0-2 

0.3 
0.4 

0.5 

O B 6  

0.8 
0.7 

00 9 
1.0 

1.5 
2,o 

0 . oogg 
0.0390 

0 , 0854 
0.1468 

0 , 3066 
O m  2210 

0.4026 

0.5086 

0.6243 

0,7500 

1.5338 
2 5922 

0.0097 
0,0356 
0 . 0711 
0 . 1110 
0.1530 

0.1968 
0.2429 

0.2920 

0 a 3445 
0,4010 

0 e 7517 
1.2273 

0.0094 
0 . 0320 
0.0588 

0.1115 
0.0855 

0,1378 
0.1653 

0.1945 

0.2261 

0 * 2602 

o 7672 
0 , 4744 
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